OCR Maths S1

Topic Questions from Papers

Binomial and Geometric Distributions

Answers

1 (i)	(a)	$\begin{aligned} & \hline \operatorname{Geo}(0.05) \\ & (19 / 20)^{5}(1 / 20) \\ & =0.0387 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Geo(0.05) or 0.95 stated or implied $q^{5} p$ attempted Answer, a.r.t. 0.0387 ISW
	(b)	$\begin{aligned} & (19 / 20)^{10} \\ & =0.599 \end{aligned}$	M1 M1 A1	3	$q^{10} \text { or } 1-p-p q \ldots-p q^{9}$ [q^{9} or q^{11}, or one wrong term: M1M0] Answer, a.r.t. 0.599 $1-\left({ }^{19} / 20\right)^{10}: \text { MOMOA0 }$
(ii)	$\begin{aligned} & \text { Mean }= 1 / p \\ &=20 \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	20, cao

(Q5, Jan 2005)

2 (i)	Boxes are independent Probability same for each box	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Both must be in context
(ii)	(a) $\mathrm{B}(8,0.1)$ 0.4305 (b) $1-\mathrm{P}(\leq 1)$ 0.1869	M1 A1 M1 A1 4	$B(8,0.1)$ stated or $0.1,0.9$ seen and sum of powers $=8$ 0.43 [05] correct $1-0.8131$ or $1-\left(0.9^{8}+8 \times 0.9^{7} \times 0.1\right)$ correct Answer, a.r.t. 0.187
(iii)	$\begin{aligned} & 2 \times 0.4305 \times 0.1869 \\ & 0.16092 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$\left.\begin{array}{l} \text { (a) } \times(\text { b) } \\ 2 \times(\text { a }) \times \text { (b) } \end{array}\right\}$

3 (i) (a) Geo(0.14) stated in (a) or (b) $\begin{aligned} & (0.86)^{4} \times 0.14 \\ & =0.0766(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1	or $0.86^{n} \mathrm{x} 0.14$ or $0.14^{n} \mathrm{x} 0.86$ in (a) or $\geq \mathrm{M} 1$ in (b) or Geo(0.86) stated in (a) or (b) No wking: 0.077: B1M1A0
$\begin{aligned} & \text { (b) } 1-0.86^{7} \\ & \text { or } 0.14+0.86 \times 0.14 \ldots+0.86^{6} \times 0.14 \\ & =0.652(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M2 } \\ \text { A1 } \end{array}$	$1-0.86^{8} \quad:-\cdots-\cdots$ $+8^{\text {th }}$ term ($r=7$ or 0) or 1 missing term: M1
$\begin{aligned} & \text { (ii) } \begin{aligned} & 1 / 0.14 \\ &=50 / 7 \text { or } 7.14(3 \mathrm{sfs}) \end{aligned} \end{aligned}$	$\begin{array}{lll} \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	
	8	

(Q2, June 2005)

4 (i) (a) $B(16,0.35)$ stated $1-0.8406$	B1 M1	Or implied by use of tables or $0.35^{a} \times 0.65^{b}(a+b=16)$ in (a) or (b) Allow $1-0.9329$ or 0.0671 Or complete method using formula, $\mathrm{P}(r=8-16$ or $9-16)$ or $1-\mathrm{P}(r=0-7$ or $0-8)$
$=0.159(3 \mathrm{sfs})$	A1 3	
(b) $0.9771-0.1339$	M1	Allow 0.9771 - 0.2892 Or complete method using formula $(r=4-9)$
$=0.843(3 \mathrm{sfs})$	A1 . 2	
(ii) ${ }^{16} C_{6}(0.38)^{6}(0.62)^{10}$	M2	Absent or incorr coeff: M1 or ${ }^{16} C_{6}(0.38){ }^{10}(0.62)^{6}: \quad$ M1
$=0.202(3 \mathrm{sfs})$	A1 3	
	8	

(Q3, June 2005)

(Q4, June 2006)

6 (i)	Geometric. Each attempt (or result or try) indep	$\begin{array}{\|ll} \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}$	In context. Not "events,. trials, outcomes" . Ignore extra
(ii)(a) (b)	$\begin{aligned} & (2 / 3)^{3} \times 1 / 3 \\ & =8 / 81 \text { or } 0.0988(3 \mathrm{sfs}) \\ & (2 / 3)^{3} \\ & 1-(2 / 3)^{3} \\ & ={ }^{19} / 27 \text { or } 0.704(3 \mathrm{sfs}) \end{aligned}$	M2 A1 3 M1 M1 A1 3	
(iii)	3	B1f 1	or ${ }^{1}$
(iv)	$1-19 / 27$ $(8 / 27)^{2} \times{ }^{19} / 27$ $(1-0.7037)$ or 0.2963 $0.2963^{2} \times 0.7037$ $={ }^{1216} / 19683$ $=0.0618(3 \mathrm{sfs})$	$\begin{array}{\|ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \end{array}$	ft (b) for M1M1 must see method if ft Allow figs rounded to 2 sfs for M1M1 cao. allow art 0.0618 or 0.0617
Total		12	

(Q8, June 2006)

7 (i)	$\begin{aligned} & \text { Geo }(2 / 3) \text { stated } \\ & (1 / 3)^{3} \times 2 / 3 \\ & =1 / 810 \text { or } 0.0247(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	or implied by $(1 / 3)^{n} \mathrm{x}^{2 / 3}$ -
ii	$\begin{aligned} & (1 / 3)^{3} \\ & 1-(1 / 3)^{3} \\ & 26 / 27 \text { or } 0.963 \text { (} 3 \mathrm{sfs} \text {) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	or $2 / 3+1 / 3 \mathrm{x}^{2} / 3+(1 / 3)^{2} \mathrm{x}^{2} / 3: \mathrm{M} 2$ one term omitted or extra or wrong: M1 $1-(1 / 3)^{4}$ or $1-\left(2 / 3+1 / 3 x^{2} / 3+(1 / 3)^{2} x^{2} / 3\right):$ M1
iii	$\begin{aligned} & 1 / 2 / 3 \\ & =3 / 2 \text { oe } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
Total		8	

(Q6, Jan 2007)

8 (i)	$\begin{aligned} & { }^{11} \mathrm{C}_{5} \times\left({ }^{1 / 4 / 4}\right)^{6} \times\left({ }^{3} / 4\right)^{5} \\ & 0.0268(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & 2 \end{array}$	or $462 \times(1 / 4)^{6} \times(3 / 4)^{5}$
ii	$\begin{aligned} & q^{11}=0.05 \text { or }(1-p)^{11}=0.05 \\ & \sqrt[11]{0.05} \\ & q=0.762 \text { or } 0.7616 \ldots \\ & p=0.238(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 A1f 4	(any letter except $p)^{11}=0.05$ oe oe or invlog $\left(\frac{\log 0.05}{11}\right)$ ft dep M2
iii	$\begin{aligned} & 11 \times p \times(1-p)=1.76 \quad \text { oe } \\ & 11 p-11 p^{2}=1.76 \quad \text { or } p-p^{2}=0.16 \\ & 11 p^{2}-11 p+1.76=0 \quad \text { or } p^{2}-p+0.16=0 \\ & \left(25 p^{2}-25 p+4=0\right) \\ & (5 p-1)(5 p-4)=0 \\ & \quad \text { or } p=\underline{11-} \frac{\sqrt{\left(11^{2}-4 \times 11 \times 1.76\right)}}{2 \times 11} \\ & p=0.2 \text { or } 0.8 \end{aligned}$	M1 A1 A1 M1 A1 5	not $11 p q=1.76$ any correct equn after mult out or equiv with $=0$ or correct fact'n or subst'n for their quad equ'n eg $p=\frac{1 \pm \frac{/(1-4 \times 0.16)}{2}}{2}$
Total		11	

(Q9, Jan 2007)

9 (i)	P (contains voucher) constant oe Packets indep oe	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Context essential NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2 2	B1 for 0.9456 or 0.946 or 0.997 (2) or for 7 terms correct, allow one omit or extra NOT $1-0.9857=0.0143$ (see (iii))
iii	$\begin{aligned} & (1-0.9857) \\ & =0.014(3)(2 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { B1ft } \\ & 1 \end{aligned}$	Allow 1- their (ii) correctly calc'd
iv	$\mathrm{B}(11,0.25)$ or 6 in 11 wks stated or impl ${ }^{11} \mathrm{C}_{6} \times 075^{5} \times 0.25^{6} \quad(=0.0267663)$ $\mathrm{P}(6$ from 11$) \times 0.25$ $=0.00669$ or $6.69 \times 10^{-3}(3 \mathrm{sfs})$	B1 M1 M1 A1 4	$\begin{aligned} & \text { or } 0.75^{a} \times 0.25^{b}(a+b=11) \text { or }{ }^{11} \mathrm{C}_{6} \\ & \operatorname{dep} \text { B1 } \end{aligned}$
Total		9	

(Q7, June 2007)

10 (ia)	$\begin{aligned} & 1 / 1 / 5 \\ & =5 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & 2 \end{array}$	
b	$\begin{aligned} & (4 / 5)^{3} \times 1 / 5 \\ & 64 / 625 \text { or } 0.102(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	
c	$\begin{aligned} & (/ 5)^{4} \\ & =256 /{ }_{625} \text { or a.r.t } 0.410(3 \mathrm{sfs}) \text { or } 0.41 \end{aligned}$	M1 A1 2	$\begin{gathered} \text { or } 1-\left(1 / 5+4 / 5 \times 1 / 5+(4 / 5)^{2} \times 1 / 5+(4 / 5)^{3} \times 1 / 5\right) \\ \text { NOT } 1-(4 / 5)^{4} \end{gathered}$
iia	$\mathrm{P}(Y=1)=p, \mathrm{P}(Y=3)=q^{2} p, \mathrm{P}(Y=5)=q^{4} p$	B1 1	$\begin{aligned} & \mathrm{P}(Y=1)+\mathrm{P}(Y=3)+\mathrm{P}(Y=5)=p+q^{2} p+q^{4} p \\ & p, p(1-p)^{2} p(1-p)^{4} \\ & q^{1-1}, q^{3-1}, q^{5-1} \end{aligned}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $>$ two terms
b	Recog that c.r. $=q^{2}$ or $(1-p)^{2}$ $\begin{aligned} & S_{\infty}=\frac{p}{1-q^{2}} \text { or } \frac{p}{1-(1-p)^{2}} \\ & \mathrm{P}(\text { odd })=\frac{1-q}{1-q^{2}} \\ & =\frac{1-q}{(1-q)(1+q)} \text { Must see this step for A1 } \\ & \left(=\frac{1}{1+q} \quad \text { AG }\right) \end{aligned}$	M1 M1 M1 A1 4	or eg $r=q^{2} p / p$ $\begin{aligned} & \left(=\frac{p}{2 p-p^{2}}\right)=\frac{p}{p(2-p)} \\ & \left(=\frac{1}{2-p}\right)=\frac{1}{2-(1-q)} \end{aligned}$

(Q9, June 2007)

11 (i)	$\begin{aligned} & \left({ }^{4} / 5\right)^{3} \times(1 / 5) \text { oe } \\ & =64 / 625 \text { or } 0.102(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \hline \text { A1 } & 2 \\ \hline \end{array}$	Allow M1 for ($\left.{ }^{4} / 5\right)^{4} \times(1 / 5)$
ii	$(4 / 5)^{4}$ alone or $1-\left(1 / 5+4 / 5 x^{1} / 5+(4 / 5)^{2} x^{1 / 5}+(4 / 5)^{3} x^{1 / 5}\right)$ $=256 / 625 \text { or } 0.410(3 \mathrm{sfs})$	M1 A1 2	Allow $(4 / 5)^{3}$ or $\left({ }^{4} / 5\right)^{5}$; not $1-(4 / 5)^{4}$ Allow one term omitted or wrong or "correct" extra Allow 0.41
iii	5	B1 1	
Total		5	

(Q2, Jan 2008)

12 (ia)	Binomial stated or implied 0.9806	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	by use of tables or $0.2^{a} \times 0.8^{b}, a+b=12$
b	$\begin{aligned} & 0.5583 \text { seen } \\ & 1-0.5583 \\ & =0.442(3 \mathrm{sfs}) \end{aligned}$	M1 M1 $\text { A1 } 3$	$\begin{aligned} & \text { add } 10 \text { corr terms or } 1 \text {-(add } 3 \text { corr terms): } \\ & \text { M2 } \\ & \text { or } 1-0.7946 \text { or } 0.205 \text { or } 1-0.6774 \text { or } 0.323 \\ & \text { or } 1-0.3907 \text { or } 0.609 \\ & \text { or add } 9 \text { terms or } 1 \text {-(add } 2 \text { or } 4 \\ & \text { terms): M1 } \end{aligned}$
ii	$\begin{aligned} & { }^{15} \mathrm{C}_{4} \times 0.3^{4} \times 0.7^{11^{1}} \\ & =0.219(3 \mathrm{sfs}) \end{aligned}$	M2 A1 3	${ }^{15} \mathrm{C}_{4} \times 0.3^{11} \times 0.7^{4}: \mathrm{M} 1$
Total		8	

(Q5, Jan 2008)

13 (ia)	Results or matches are indep Prob of winning is constant	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	allow "wins" indep; not "trials" indep not "success"
ib	No of wins (or losses)	B1 1	
ii	$\begin{aligned} & { }^{21} \mathrm{C}_{10} p^{10} q^{11}={ }^{21} \mathrm{C}_{9} p^{9} q^{12} \\ & \frac{12}{10} p=q \text { or } \frac{12 p(1-p)^{-1}=1 \text { or similar }}{10} \\ & 1.2 p=1-p \text { oe eg } p=0.833(1-p) \\ & \quad \text { or } 352716 p=293930(1-p) \\ & p=5 / 11 \text { or } 0.455(3 \mathrm{sfs}) \text { oe } \end{aligned}$	M1 M1M1 M1 A1 5	or $(1-p)$ for $q \&$ allow omit bracket or $352716 p^{10} q^{11}=293930 p^{9} q^{12}$ M1 for ${ }^{12} / 10$ or $6 / 5$ or 1.2 or $5 / 6$ or 0.833 M1 for $p \& q$ cancelled correctly or equiv equn in p or q (cancelled) nos not nec'y cancelled; not alg denom
Total		8	

(Q7, Jan 2008)

14 (ia)	$\begin{aligned} & \text { Geo stated } \\ & (7 / 8)^{2}(1 / 8) \\ & 49 / 512 \text { or } 0.0957(3 \mathrm{sfs}) \\ & \hline \end{aligned}$	M1 M1 A1 3	or impl. by $(7 / 8)^{n}(1 / 8)$ or $(1 / 8)^{n}(1 / 8)$ alone
(b)	$(1 / 8)^{3}$ alone ${ }^{343} / 512$ or $0.670(3 \mathrm{sfs}) \quad$ allow 0.67	$\begin{array}{ll} \mathrm{M} 2 \\ & \\ \text { A1 } & 3 \end{array}$	or $1-\left(1 / 8+\mathrm{T}_{8 \times} /_{8}+(1 / 8)^{2} \times 1 / 8\right):$ M2 one term incorrect, omit or extra: M1 $1-(1 / 8)^{3}$ or $(7 / 8)^{2}$ alone: M1
(ii)	8	B1 1	
(iii)	Binomial stated or implied ${ }^{15} \mathrm{C}_{2}(7 / 8)^{13}(1 / 8)^{2}$ $=0.289(3 \mathrm{sfs})$	M1 M1 A1 3	eg by $(1 / 8)^{a}(1 / 8)^{b^{\prime}}(a+b=15, a, b \neq 1)$, not just ${ }^{n} \mathrm{C}_{r}$
Total		10	

(Q3, Jan 2009)

15 (i)	Binomial $n=12, p=0.1$ Plates (or seconds) independent oe Prob of fault same for each plate oe	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 4 \end{array}$	B(12, 0.1) : B2 NOT: batches indep Comments must be in context Ignore incorrect or irrelevant
(ii)(a)	$\begin{aligned} & 0.9744-0.8891 \text { or }{ }^{12} \mathrm{C}_{3} \times 0.9^{9} \times 0.1^{3} \\ & =0.0852 \text { or } 0.0853(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	
(b)	$\begin{aligned} & 1-0.2824 \text { or } 1-0.9^{1} \\ & =0.718(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \quad 2 \end{aligned}$	allow $1-0.6590$ or $1-0.9{ }^{11}$
(iii)	$\begin{aligned} & \begin{array}{l} (1-0.718 " \text { and } 1-" 0.718 " \text { used } \\ \begin{array}{l} (1-0.718)^{4} \\ \\ \quad+{ }^{4} \mathrm{C}_{2}(1-0.718)^{2} \times 0.718 \end{array} \\ =0.317(3 \mathrm{sfs}) \end{array} \end{aligned}$	B1 M2 A1 4	ft (b) for B1M1M1 M1 for any one term correct (eg opp tail or no coeffs) $1-\mathrm{P}(3$ or 4$)$ follow similar scheme M 2 or M1 $1-$ correct wking $(=0.623)$ B1M2 cao
Total		12	

(Q7, Jan 2009)

16			Q1: if consistent " 0.8 " incorrect or $1 / 8,7 / 8$ or 0.02 allow M marks in ii, iii \& $1^{\text {st }} \mathrm{M} 1$ in i
i	Binomial stated $\begin{aligned} & 0.9437-0.7969 \text { or }{ }^{8} \mathrm{C}_{3} \times 0.2^{3} \times 0.8^{5} \\ & =0.147(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	or implied by use of tables or ${ }^{8} \mathrm{C}_{3}$ or $0.2^{a} \times 0.8^{b} \quad(a+b=8)$
ii	$\begin{aligned} & 1-0.7969 \\ & =0.203(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } 2 \end{aligned}$	allow $1-0.9437$ or $0.056(3)$ or equiv using formula
iii	$\begin{aligned} & 8 \times 0.2 \text { oe } \\ & 1.6 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } 2 \end{aligned}$	$\begin{aligned} & 8 \times 0.2=2 \mathrm{M} 1 \mathrm{A0} \\ & 1.6 \div 8 \text { or }{ }_{1.6} / \mathrm{M} 0 \mathrm{~A} 0 \end{aligned}$
Total		7	

(Q1, June 2009)

17			Q4: if consistent " 0.7 " incorrect or $1 / 3,2 / 3$ or 0.03 allow M marks in ii , iii \& $1^{\text {st }} \mathrm{M} 1$ in i
i	$\begin{aligned} & \text { Geo stated } \\ & 0.7^{3} \times 0.3 \text { alone } \\ & 1029 / 10000 \text { or } 0.103(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	$\begin{aligned} & \text { or implied by } q^{n} \times p \text { alone }(n>1) \\ & 0.7^{3}-0.7^{4} \end{aligned}$
ii	0.7^{4} alone $={ }^{2401} /_{10000} \text { or } 0.240(3 \mathrm{sf})$	$\mathrm{M} 1$ A1 2	$\begin{aligned} & 1-\left(0.3+0.7 \times 0.3+0.7^{2} \times 0.3+0.7^{3} \times 0.3\right) \\ & \text { NB } 1-0.7^{4}: \text { M0 } \end{aligned}$
iii	$=0.832(3 \mathrm{sfs})$	M2 A1 3	or $0.3+0.7 \times 0.3++\ldots+0.7^{4} \times 0.3 \mathrm{M} 2$ M1 for one term extra or omitted or wrong or for $1-$ (above) M1 for $1-0.7^{6}$ or 0.7^{5} NB Beware: $1-0.7^{6}=0.882$
		8	

(Q4, June 2009)

18 (i)	$\begin{aligned} & (1-0.12)^{n} \\ & \frac{\log 0.05}{\log 0.88} \\ & n=24 \end{aligned}$	$\begin{aligned} & \text { or } 0.88^{23}=0.052 \ldots \ldots \\ & \text { or } 0.88^{24}=0.046 \ldots \end{aligned}$	M1 M1 A1 3	Can be implied by $2^{\text {nd }}$ M1 allow $n-1$ or $\log _{0.88} 0.05$ or $23.4(\ldots)$ Ignore incorrect inequ or equals signs
ii	${ }^{6} \mathrm{C}_{2} \times 0.88^{4} \times 0.12^{2}$ $\begin{aligned} & \times 0.12 \\ & =0.0155 \end{aligned}$	$(=0.1295 \ldots)$	M1 A1 5	or $0.88^{4} \times 0.12^{2}$ or ${ }^{6} \mathrm{C}_{2} \times 0.88^{4} \times 0.12^{2}+$ extra \quad M2 or 2 successes in 6 trials implied or ${ }^{6} \mathrm{C}_{2}$ dep \geq M1 $0.88^{4} \times 0.12^{2} \times 0.12: \quad$ M1 $0.88^{4} \times 0.12^{3}$ unless clear P \quad M2M1 success in 6 trials $) \times 0.12$ \quad in which case M2M1A0
Total			8	

(Q9, June 2009)

19 (i)	attempts at threading indep prob of succeeding in threading const	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	in context in context
(ii) (a)	$\begin{aligned} & 07^{4} \times 0.3 \\ & =0.0720(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	Condone 0.072
(b)	0.7^{5} $=0.168(3 \mathrm{sfs})$	$\mathrm{M} 2$ $\text { A1 } 3$	or $1-\left(0.3+0.7 \times 0.3+0.7^{2} \times 0.3+0.7^{3} \times 0.3\right.$ $\left.+0.7^{4} \times 0.3\right)$ M1 for one term omitted or extra or wrong or $1-0.7^{5}$ or $\left(0.3+\ldots+0.7^{4} \times 0.3\right)$ or $0.3,0.7$ muddle or 0.7^{4} or 0.7^{6} alone. 0.6 not 0.7 M0 in (a) M1 in (b) $1 / 32 / 2 / 3$ used M1in (a) M1 in (b)
(iii)	likely to improve with practice hence independence unlikely or prob will increase each time	B1 $\text { B1 } 2$	or thread strands gradually separate $1^{\text {st }}$ B1 must be in context. hence independence unlikely or prob will decrease each time or similar Allow 'change'
Total		[9]	

(Q1, Jan 2010)

20 (i)	p^{2}	B1 1	
(ii)	(q2p) ${ }^{2}$ oe $=\mathrm{AG}$	B1 1	
(iii)	$\mathrm{r}=\mathrm{q}^{2}$	B1	May be implied
	a/(1-r) used p^{2}	M1	With $\mathrm{a}=\mathrm{p}^{2}$ and $\mathrm{r}=\mathrm{q}^{2}$ or q^{4}
	$\left(S_{\infty}=\right) \frac{p}{1-q^{2}}$	A1	
	$=\frac{p^{2}}{1-(1-p)^{2}}$	M1	Attempt to simplify using $\mathrm{p}+\mathrm{q}=1$ correctly. Dep on $r=q^{2}$ or q^{4} $\frac{(1-q)^{2}}{(1-q)(1+q)} \quad \text { or } \mathrm{p}^{2} / \mathrm{p}(1+\mathrm{q})$
	$\mathrm{p} /(2-\mathrm{p}) \mathrm{AG}$	A1 5	Correctly obtain given answer showing at least one intermediate step.
P2Total		[7]	

(Q9, Jan 2010)

21 (ia)	0.299 (3 sf)	B1 1	
ib	$\begin{aligned} & 0.2991-0.1040 \\ & =0.195(3 \mathrm{sf}) \quad \text { or } \frac{1280}{6561} \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	Must subtract correct pair from table
iia	$\begin{aligned} & { }^{15} \mathrm{C}_{4} \times(1-0.02) \times 0.22^{4} \\ & =0.208(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} & \\ \text { M1 } & \\ \text { A1 } & \end{array}$	Allow M1 for ${ }^{15} \mathrm{C}_{4} \times 0.88{ }^{11} \times 0.22^{4}$
iib	$\begin{aligned} & 15 \times 0.22=) 3.3 \\ & 15 \times 0.22 \times(1-0.22) \text { or }{ }^{\prime} 3.3 \prime \times(1-0.22) \\ & =2.57(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 3	Allow M1 for $15 \times 0.22 \times 0.88$
Total		8	

22 (ia)	Geo(0.3) stated or implied $\begin{aligned} & 0.7^{3} \times 0.3 \\ & =0.103(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \end{array}$	by $0.7^{n} \times 0.3$
b	$\begin{aligned} & 0 . .^{3} \text { or } 0.343 \\ & 1-0.7^{3} \end{aligned}$ $=0.657$	M1 M1 A1 3	0.7^{3} must be alone, ie not $0.7^{3} \times 0.3$ or similar allow $1-0.7^{4}$ or 0.7599 or 0.76 for M1 only or $0.3+0.7 \times 0.3+0.7^{2} \times 0.3$: M1M1 1 term wrong or omitted or extra
iia	State or imply one viewer in $1^{\text {st }}$ four $\begin{aligned} & { }^{4} \mathrm{C}_{1} \times 0.7^{3} \times 0.3 \\ & \times 0.3 \\ & =0.123 \end{aligned}$	M1 M1 M1 A1 4	or $\mathrm{B}(4,0.3)$ stated, or C_{1} used, or YNNNY dep 1st M1
b	$\begin{aligned} & 0.7^{5}+{ }^{5} \mathrm{C}_{1} \times 0.7^{4} \times 0.3 \\ & =0.528(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or $1-\left(0.3^{2}+2 \times 0.3^{2} \times 0.7+3 \times 0.3^{2} \times 0.7^{2}+4 \times 0.3^{2} \times 0.7\right)$ Not ISW, eg $1-0.528$: M1A0
Total		12	

(Q8, June 2010)

23				SC:Consistent use of incorrect ($1-0.2$) score M-marks only SC:Consistent 0.8 insted of 0.2 , no A-marks: max M0M2M2M2 "Consistent" means in every part attempted
I	$\begin{aligned} & 0.8^{2} \times 0.2 \\ & =\frac{16}{125} \text { or } 0.128 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$		
ii	$\begin{aligned} & 0.8^{2} \times 0.2+0.8^{3} \times 0.2+0.8^{4} \times 0.2 \\ & =\frac{976}{3125} \text { or } 0.312(3 \mathrm{sfs}) \end{aligned}$	M2 A1 3	1 term omitted or wrong or extra: M1	Using $\mathrm{P}(X \leq 5) \& \mathrm{P}(X \leq 2)$; three methods: $1-0.8^{5}-\left(1-0.8^{2}\right) \text { or } 0.672-0.36: \text { M2 }$ Allow M1 for $1-0.8^{5}-\left(1-0.8^{3}\right)$ or $0.672-0.488$ or $1-0.8^{4}-\left(1-0.8^{2}\right)$ or $0.5904-0.36$ $0.8^{2}-0.8^{5}:$ M2 Allow M1 for $0.8^{3}-0.8^{5}$ or $0.8^{2}-0.8^{4}$ $0.2+0.8 \times 0.2+0.8^{2} \times 0.2+0.8^{3} \times 0.2+0.8^{4} \times 0.2-(0.2+0.8 \times 0.2): \quad$ M2 One term omitted or wrong or extra: But NB If include $0.8^{-1} \times 0.2$ in both $\mathrm{P}(X \leq 5) \& \mathrm{P}(X \leq 2)$, get correct ans but M1M0A0 M0 for eg $1-0.8^{5}-0.8^{2}$ or $0.672-0.64$
iii	$=\frac{256}{625} \text { or } 0.4096 \text { or } 0.410(3 \mathrm{sfs})$	$\begin{aligned} & \text { M2 } \\ & \\ & \text { A1 } \quad 3 \end{aligned}$	$1-\left(0.2+0.8 \times 0.2+0.8^{2} \times 0.2+0.8^{3} \times 0.2\right)$ 1 term omitted or wrong or extra: M1 $1-0.8^{4}$ or $0.590 \quad$ M1 or 0.8^{3} or 0.512 or 0.8^{5} or 0.328 : M1 Allow 0.41	$\begin{aligned} & 1-\left(0.2+0.8 \times 0.2+0.8^{2} \times 0.2+0.8^{3} \times 0.2\right) \mathrm{M} 2 \\ & 0.2 \times 0.8^{4} \mathrm{M} 0 \quad 1-0.8^{n}(n \neq 4) \text { M0 } \end{aligned}$
iv	$\begin{aligned} & 0.2 \times 0.8 \times 0.2 \\ & \times 2 \\ & =0.064 \mathrm{or}^{8} / 125 \end{aligned}$	M1 M1 A1 3	$\begin{aligned} & \text { or } 0.2 \times 0.8^{0} \times 0.8 \times 0.2 \\ & \text { or } 0.2 \times 0.8 \times 0.2+0.8 \times 0.2 \times 0.2 \end{aligned}$	or $0.032 \quad$ NOT $n \times 0.2^{2} \times 0.8$ except $n=2$ Fully correct method except allow M0M1 for $(0.2+0.8 \times 0.2) \times 2$, must see method Attempt 0,3 and/or 3,0 , as well as 2,1 and/or 1,2 ; max M1M0A0 Careful: $0.2 \times 0.8 \times 0.2+0.2 \times 0.8^{-1} \times 0.128=0.064$ M1M0A0 Careful: $0.8 \times 0.8 \times 0.2 \div 2=0.064:($ ie $\mathrm{P}(X=3) \div 2)$ M0M0A0
Total		11		

(Q2, Jan 2011)

24			Consistent use of $\frac{1}{3}$ or MR of 30% (eg 0.2): ("Consistent" as in Qu 2) (i) B 1 B 0 B 1 B 1 (iia) B 0 (iib) 0.7901-0.4609 or ${ }^{5} \mathrm{C}_{2}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{2} \quad \mathrm{M} 1 ; \quad=0.329(3 \mathrm{sf}) \mathrm{A} 1$ (iii) $p=" 0.3292$ " M1; $\quad{ }^{7} \mathrm{C}_{3}(1-" 0.3292 ")^{4}(" 0.3292 \text { " })^{3} \mathrm{M} 1 ; \quad=0.253(3 \mathrm{sf}) \mathrm{A} 1$ ie $\max 8 / 10$	
i	Binomial or B $(5,0.3)$ Prob of gift same for all pkts Whether pkt contains gift is indep of other pkts	B1 B1 B1 B1 4	Prob of gift is constant or fixed or consistent or same oe Obtaining a gift is indep Each time receive a gift is indep Context needed for $3^{\text {rd }} \& 4^{\text {th }}$ B-mks	Allow mis-spellings but NOT "Biometric" Condone $\mathrm{B} \sim(5,0.3)$ or $\mathrm{B}(0.3,5)$: B 1 B 1 but $\mathrm{B}(X=0.3, n=5)$: B 1 B 0 NOT: prob of success const; NOT prob stays same each go One box doesn't affect another. Pkts indep. Gifts indep She buys packets separately Prob of a gift is indep Prob of gift indep of one another \& const: B1B1 NOT: Each week is indep NOT: Number of gifts received is indep NOT: Events indep If Geo(0.3) stated, can score max B0B0B1B1 If Geo($5,0.3$) stated, can score max B0B1B1B1
iia	0.8369	B1 1	or 0.837	
b	$\begin{aligned} & 0.8369-0.5282 \text { or }{ }^{3} \mathrm{C}_{2}(0.7)^{3}(0.3)^{2} \\ & =0.3087 \text { or } 0.309(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$		
iii	$\begin{aligned} & p=" 0.3087 " \\ & { }^{7} \mathrm{C}_{3}(1-" 0.3087 ")^{4}(" 0.3087 ")^{3} \\ & =0.235(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 3	(iib) used in a calc'n eg " 0.3087 " $\times 3$	or B(7, "0.3087") stated or $1-$ " 0.3087 " used instead of " 0.3087 " $n=35 \text { or } 15: \max \text { M1M0A0 }$
Total		10		

25 (ia)	$\begin{aligned} & (1-0.5565) \text { or } 12 \times 0.85^{11} \times(1-0.85)+0.85^{12} \\ & =0.4435 \text { or } 0.443 \text { or } 0.444(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ & \\ \text { A1 } & 2 \end{array}$	or $1-\left((1-0.85)^{12} \ldots .^{12} \mathrm{C}_{10} \times 0.85^{10}(1-0.85)^{2}\right)$ ie 1 - (all 11 correct binomial terms)	or $1-0.557$ NB $1-0.4435$ (oe): M0A0
b	$\begin{aligned} & 0.5565-0.2642 \text { or }{ }^{12} \mathrm{C}_{10}(1-0.85)^{2}(0.85)^{10} \\ & =0.2923 \text { or } 0.2924 \text { or } 0.292(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$		or 0.557-0.264
c	$\begin{aligned} & 12 \times 0.85 \times(1-0.85) \\ & =1.53 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$		
ii	$\left(\frac{3}{4}\right)^{2}$ AND $\frac{3}{4} \times \frac{1}{4}$ seen (possibly $\times 2$) $\left(\frac{3}{4}\right)^{2} \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe \quad or $\frac{27}{128}$ or 0.211 $2 \times\left(\frac{3}{4}\right)^{2} \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe $=\frac{27}{64}$ or $0.422(3 \mathrm{sfs})$	M1	$\begin{aligned} & \text { eg }\left(\frac{3}{4}\right)^{2}+\frac{3}{4} \times \frac{1}{4} \text { or } 2 \times\left(\frac{3}{4}\right)^{2}+2 \times \frac{3}{4} \times \frac{1}{4} \\ & \text { or } 0.5625+0.1875 \text { or } 0.5625+0.375 \\ & \text { or eg } 0.5625 \times 0.375 \\ & \text { Fully correct method } \end{aligned}$	or $\frac{9}{16}$ and $\frac{3}{16}$ or $\frac{9}{16}$ and $\frac{3}{8} \quad$ eg in table or list
		$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		Allow even if further incorrect wking
		A1 4		Ans 0.211 : check wking but probably gets M1M1M0A0
				Use of 0.85 instead of $\frac{1}{4}:$ MR max M1M1M1A0
Total		10		

26	(i)	$(1-0.12)^{13}$ or $13 \times(1-0.12)^{12} \times 0.12$ $(1-0.12)^{13}+13 \times(1-0.12)^{12} \times 0.12$	M1 M1 $=0.526(3 \mathrm{sf})$	Either seen A1[3]	Fully correct method	

(Q3, Jan 2012)

(Q6, Jan 2012)

29	(i)		Binomial stated $\begin{aligned} & 1-0.9648 \\ & =0.0352(3 \mathrm{sfs}) \text { or } 9 / 256 \end{aligned}$	M1 M1 A1 [3]	or implied by $\mathrm{C} \times 0.5^{r}$ or use of table or ${ }^{8} \mathrm{C}_{7} \times 0.5^{7} \times 0.5+0.5^{8}$ fully correct method	or $0.5^{7} \times 0.5+0.5^{8}$ or $0.5^{8}+0.5^{8}$ $1-\left(0.5^{8}+8 \times 0.5^{8}+{ }^{8} \mathrm{C}_{2} 0.5^{8} \ldots\right)$ all correct
	(ii)	(a)	$\begin{aligned} & { }^{22} \mathrm{C}_{11} \times 0.5^{11} \times 0.5^{11} \\ & =0.168(3 \mathrm{sfs}) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{gathered}$	Fully correct method. Not ISW	eg 0.168^{2} or 2×0.168 or $1-0.168:$ M0A0
	(ii)	(b)	$1-" 0.168^{\prime \prime}$ $\begin{aligned} & 1 / 2(1-" 0.168 ") \\ & =0.416(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	or $0.5^{22}\left({ }^{22} \mathrm{C}_{12}+{ }^{22} \mathrm{C}_{13}+{ }^{22} \mathrm{C}_{14}+\ldots+22+1\right)$ All 11 correct terms seen, or correct ans: M2 or $\mathrm{P}(X=12,13, \ldots 21,22)$ stated or implied with ≥ 2 terms shown or one extra term M1	or $1-\left({ }^{22} \mathrm{C}_{12}+{ }^{22} \mathrm{C}_{13}+{ }^{22} \mathrm{C}_{14}+\ldots+22+1\right)$ 1 - all 12 correct terms M2 or similar marks for $\mathrm{P}(X=10,9,8 \ldots 0)$

(Q8, Jan 2012)

30	(i)		$\begin{aligned} & 1-0.1754 \text { alone } \\ & =0.825(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Allow 1-0.2855 or 0.7145 or 0.715 alone	
	(ii)	(a)	$\begin{aligned} & { }^{4} \mathrm{C}_{2} \times 0.7^{2} \times 0.3^{2} \\ & =\frac{13233}{5000} \text { or } 0.265(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	All correct	
	(ii)	(b)	$4,4,2 \& 4,3,3$ only, seen or implied $\mathrm{P}(Y=4)=0.7^{4}$ (or $\frac{2401}{10000}$ or 0.2401$)$ $\mathrm{P}(Y=3)=4 \times 0.3 \times 0.7^{3}$ (or $\frac{1029}{2500}$ or 0.4116$)$ $\mathrm{P}(4,3,3)=3 \times " 0.2401 " \times " 0.4116 " 2$ $($ or 0.122$)$ $\mathrm{P}(4,4,2)=3 \times 0.2401 " 2 \times " 0.265 "$ (or 0.0458$)$ $\mathrm{P}($ Tot $=10)=0.168(3 \mathrm{sfs})$	B1 M1 M1 M1 M1 A1 [6]	Both needed ie $3 \times$ their $\mathrm{P}(4) \times(\text { their } \mathrm{P}(3))^{2}$ ie $3 \times$ (their $\mathrm{P}(4))^{2} \times$ their $\mathrm{P}(2) \mathrm{ft}(\mathrm{ii})(\mathrm{a})$ For M mks ignore extra combs eg $\mathrm{P}(4,4,3)$ If $\mathrm{B}(30,0.6)$ clearly being used: Any 5 combs adding to 10 seen $\mathrm{P}(8)={ }^{30} \mathrm{C}_{8} \times 0 . .^{22} \times 0.6^{8}$ or 0.0002 $\mathrm{P}(9)={ }^{30} \mathrm{C}_{9} \times 0.4^{21} \times 0.6^{9}$ or 0.0007 $\mathrm{P}(10)={ }^{30} \mathrm{C}_{10} \times 0.4^{20} \times 0.6^{10}$ or 0.0020 all three correct M2 or two correct M1	if " $3 \times$ " omitted twice or " 3 ! \times " used twice allow M1M0 eg ans 0.0560, 0.0559,0.336, probably B1M1M1M1M0A0 but must see method

31	(i)	(a)	Geo stated or implied $0.9^{5} \times 0.1$ alone $=0.059(0 \ldots)(2 \mathrm{sfs})$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	eg by $0.9^{p} \times 0.1$ or $0.1^{p} \times 0.9$ alone, $p>1$ all correct	
	(i)	(b)	$\begin{aligned} & \left.0.9^{5} \text { or } 0.59 \ldots \quad \text { (NB cf ans to }(\mathrm{i})(\mathrm{a})!!\right) \\ & 1-0.9^{5} \\ & =0.4095 \text { or } 0.410(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	```\(0.1+0.9 \times 0.1+\ldots 0.9^{4} \times 0.1: \mathrm{M} 2\) 1 term wrong or omit or extra or 1 - (all terms correct): M1 or \(1-0.9^{6}\) : M1```	M0M0A0 for $0.9^{p} \times 0.1$
	(ii)	(a)	$\begin{aligned} & 0.05+0.95^{2} \times 0.05 \\ & =\frac{761}{8000} \text { or } 0.0951(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	All correct	NB!! $2 \times 0.95 \times 0.05=0.095$
	(ii)	(b)	$\begin{aligned} & 0.05,0.95^{2} \times 0.05, \ldots \text { or } \frac{1}{20}, \frac{361}{8000}, \ldots \text { oe } \\ & \frac{0.05}{1-0.099^{2}} \text { or } \frac{0.05}{1-0.9025} \text { oe } \\ & =\frac{20}{39} \text { or } 0.513(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	≥ 2 terms. Not nec'y added May be implied by next line or $\frac{0.05}{1-(1-0.5)^{2}}$ or $\frac{0.05}{2 \times 0.05-0.05^{2}}$ or $\frac{1}{1.95}$ oe	or $r=0.95^{2}$ stated or implied $\text { NB } \frac{0.05}{1-0.5 \times 0.05}=0.0513 \text { M0A0 }$

(Q9, June 2012)

32			If incorrect p used consistently in all parts of qu 5, no mks in (i)(a) \& (b) but can score M-marks in (ii) and (iii).			
	(i)	(a)	1.25 oe	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$		
	(i)	(b)	$\begin{aligned} & 0.8965-0.6328 \\ & =0.264(3 \mathrm{sf}) \end{aligned}$	M1 A1 [2]	$\begin{aligned} & { }^{5} \mathrm{C}_{2}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{2} \\ & =\frac{135}{512} \text { or } 0.264(3 \mathrm{sf}) \end{aligned}$	Answer which rounds to 0.264
	(ii)		Answer which rounds to 0.244	M1 M1 M1 A1 [4]	$\begin{array}{r} \left(\left(\frac{3}{4}\right)^{5}\right)^{2} \text { or }\left(\frac{243}{1024}\right)^{2} \text { or }\left(\frac{3}{4}\right)^{10} \text { oe }\left(=\frac{59049}{1048576}\right) \\ \left(\frac{3}{4}\right)^{5} \times 5\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right) \text { or } \frac{243}{1024} \times \frac{405}{1024} \text { or } 5\left(\frac{3}{4}\right)^{9}\left(\frac{1}{4}\right) \\ \left(=\frac{98415}{1048576}\right) \end{array}$ $2 \times$ (attempt $\mathrm{P}(1,0)$ alone), $(\operatorname{NOT} 2 \times(\mathrm{P}(1,0)+\mathrm{P}(0,0))$ If $\mathrm{P}($ sum $\leq 2)$, all three $\mathrm{M}-\mathrm{mks}$ are available, but for 3 rd M1, must be $2 \times(\mathrm{P}(1,0)+\mathrm{P}(2,0))$ only Ans 0.150 probably M1M1M0A0 but check working Ans 0.188 probably M0M1M1A0 but check working	$\begin{aligned} & \mathrm{B}(10.0 .25) \text { seen or implied } \\ & \text { Table or formula with } n=10 \text { used M1 } \\ & \begin{array}{l} \mathrm{P}(X \leq 1) \text { from table } \\ \text { or }\left(\frac{3}{4}\right)^{10}+10\left(\frac{3}{4}\right)^{9} \times\left(\frac{1}{4}\right) \quad \text { M1 } \end{array} \\ & \begin{array}{l} 0.244(3 \mathrm{sf}) \\ \mathrm{P}(X \leq 2)=0.526 \text { from table } n=10 \\ \text { M1M1M1A0 } \end{array} \\ & \begin{array}{l} \text { SC } \mathrm{P}(X=2) \text { answer } 0.282: \quad \mathrm{B} 1 \end{array} \end{aligned}$
	(iii)		$\begin{aligned} & \text { Use of } 0.2637 \text { or } 0.264 \\ & \left.{ }^{10} \mathrm{C}_{3} \times\left(1-{ }^{\prime} 0.2637\right)^{\prime}\right)^{7} \times{ }^{\prime} 0.2637^{\prime 3} \\ & =0.258(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	or their (i)(b) $\mathrm{ft}(\mathbf{i})(\mathbf{b}) \quad$ allow ft their (ii) for this M1 only Correct ans, no working: M1M1A1	$\begin{array}{r} \text { SC allow }{ }^{10} \mathrm{C}_{3} \times\left(1-{ }^{{f9231fb98-6374-42bf-89ab-d96d90c2953f}} 0.282^{3} \\ \text { M0M1 } \\ (0.282 \text { comes from } \mathrm{P}(3 \text { totals }=2)) \end{array}$

(Q5, Jan 2013)

33	(i)	(a)	$\begin{aligned} & 0.9^{4} \times 0.1 \\ & =\frac{6561}{100000} \text { or } 0.0656(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$		
	(i)	(b)	$\begin{aligned} & 0.9^{5} \\ & =\frac{59049}{100000} \text { or } 0.59(2 \mathrm{sf}) \end{aligned}$	M1 A1 [2]	Allow 0.9^{4} or $1-0.9^{5}$:M1 but $1-0.9^{n}(n \neq 5)$ or $0.1 \times 0.9^{n}: \mathrm{M} 0$	$\begin{aligned} & 1-\left(0.1+0.9 \times 0.1+0.9^{2} \times 0.1+\right. \\ & \left.\ldots 0.9^{4} \times 0.1\right) \end{aligned}$ Allow without " 1 -" OR omit last term $\text { NB } 0.9^{5} \times 0.1=0.0590 \mathrm{M} 0 \mathrm{~A} 0$
	(i)	(c)	$\begin{array}{ll} 0.1 \times 0.1 \text { or }[0.1 \times 0.1 \times 0.9+0.1 \times 0.1 \times 0.1] & \text { oe } \\ +0.1 \times 0.9 \times 0.1 & \text { oe } \\ +0.9 \times 0.1 \times 0.1 & \text { oe } \\ & \\ =0.028 & \end{array}$	M1 M1 M1 A1 [4]	M1M1 two correct terms, no incorrect multiples M1 all correct Ans 0.027 probably M0M1M1A0 but check working SC if no M-mks scored: SSF, SSS, FSS, SFS or SS, FSS, SFS seen or implied: B1	$3 \times 0.1^{2} \times 0.9+0.1^{3}$ no incorrect multiples M2 for 1st term; M1 for 2nd This method only scores using " 1 -": $0.9^{3} ; 3 \times 0.9^{2} \times 0.1$ no incorrect multiples M1; M1 1 - one or both terms with no further wking: M1 (dep M1) eg $1-0.9^{3}$ alone M1M0M1
	(ii)	(a)	$\begin{aligned} & 0.9 \times 0.8 \times 0.1 \\ & =\frac{9}{125} \text { or } 0.072 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	alone or allow $\times 0.8$ (ie girls in wrong order) (=0.0576)	NOT $0.9 \times 0.8 \times 0.1 \times 0.2=0.0144:$ M0A0 NOT $0.9 \times 0.8 \times 0.2=0.144: \quad$ M0A0
	(ii)	(b)	$\begin{aligned} & 0.9^{9 \text { or } 10} \times 0.8^{9 \text { or } 10} \times 0.1(\text { or } \times 0.2, \text { not } \\ & \times 0.1 \times 0.2) \\ & (0.9 \times 0.8)^{9} \times 0.1 \quad \text { oe } \\ & =5.2 \times 10^{-3} \text { or } 0.0052(2 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	allow $0.9^{9 \text { or } 10} \times 0.8^{9 \text { or } 10} \times 0.1 \times{ }^{18,19,20} \mathrm{C}_{1}$ fully correct SC Consistent use of 0.8 for both girls: (ii)(a) or 0.9 for both girls: (ii)(a) seen, allow (a) 0 (b) B1	If ans $=0.00360$ or 0.0150 see SC below .128 (ii)(b) 0.00360 .081 (ii)(b) 0.0150 If both these ans

