OCR Maths S1

Topic Questions from Papers

Binomial and Geometric Distributions

Answers

1	(i)	(a)	Geo(0.05) $(19/20)^5(1/20)$ = 0.0387	M1 M1 A1	3	Geo(0.05) or 0.95 stated or implied q^5p attempted Answer, a.r.t. 0.0387 ISW
		(b)	$(19/20)^{10}$	M1 M1		q^{10} or $1 - p - pq \dots - pq^{9}$ $[q^{9}$ or q^{11} , or one wrong term: M1M0]
			= 0.599	A1	3	
	(ii)	Mean	= 1/ <i>p</i>	M1		X - 2V
	. ,		= 20	A1	2	20, cao

(Q5, Jan 2005)

physicsandmathstutor.com physicsandmathstutor.com

2 (i))	Boxes are independent	B1		Both must be in context
		Probability same for each box	B1	2	
(ii	i)	(a) $B(8, 0.1)$	M1		B(8, 0.1) stated or 0.1, 0.9 seen and sum of powers =8
		0.4305	A1		0.43[05] correct
		(b) $1 - P(\le 1)$	M1		$1 - 0.8131$ or $1 - (0.9^8 + 8x0.9^7 x 0.1)$ correct
		0.1869	A 1	4	Answer, a.r.t. 0.187
(ii	ii)	$2 \times 0.4305 \times 0.1869$	M1 M1		(a) x (b) }
		0.16092	A1	3	2 x (a) × (b) } Answer, a.r.t. 0.161

(Q7, Jan 2005)

3 (i) (a) Geo(0.14) stated in (a) or (b)	B1		or $0.86^n \times 0.14$ or $0.14^n \times 0.86$ in (a) or $\ge M1$ in (b)
$(0.86)^4 \times 0.14$	M1		or Geo(0.86) stated in (a) or (b)
= 0.0766 (3 sfs)	A1	3	No wking: 0.077: B1M1A0
(b) 1 – 0.86 ⁷	M2		1 – 0.86 ⁸ : M1
or $0.14 + 0.86 \times 0.14 \dots + 0.86^6 \times 0.14$	1,12		$+8^{th}$ term ($r = 7$ or 0) or 1 missing term: M1
= 0.652 (3 sfs)	A1	3	
(ii) 1/0.14	M1		
$= \frac{50}{7}$ or 7.14 (3 sfs)	A1	2	
	8		

(Q2, June 2005)

4 (i) (a) B(16, 0.35) stated	B1		Or implied by use of tables or
			0.35^{a} x 0.65^{b} (a+b = 16) in (a) or (b)
1 - 0.8406	M1		Allow 1 – 0.9329 or 0.0671
			Or complete method using formula,
			P(r = 8-16 or 9-16) or 1-P(r = 0-7 or 0-8)
= 0.159 (3 sfs)	A1	3	
(b) 0.9771 – 0.1339	M1		Allow 0.9771 – 0.2892
			Or complete method using formula $(r = 4-9)$
= 0.843 (3 sfs)	A1	2	
(ii) ${}^{16}C_6(0.38)^6(0.62)^{10}$	M2		Absent or incorr coeff: M1
			or ${}^{16}C_6(0.38)^{10}(0.62)^6$: M1
= 0.202 (3 sfs)	A1	3	
	8		

(Q3, June 2005)

physics and math stutor.com

5 (i)	0.4207 or 0.421 (3 sfs) or $0.8^{25} + 25 \times 0.8^{24} \times 0.2 +^{25} C_4 \times 0.4^{21} \times 0.2^4$	B1		or 1 – 0.6167 or 0.3833 (3 sfs) or 1- (6 correct terms, 0 to 5)
	0.579(3)	B1	2	of 1- (6 correct terms, 6 to 3)
(ii)	$ \begin{array}{l} $	M1 A1	2	
(iii)	Allow "=" thro'out	-		or $1 - {}^{n}C_{0} \times 0.27^{0} \times 0.73^{n} > 0.95$ oe
	$\begin{vmatrix} 0.73^9 = 0.059 \\ 0.73^{10} = 0.043 \end{vmatrix} \begin{vmatrix} 1 - 0.73^n > 0.95 \\ \text{or } 0.73^n < 0.05 \\ n\log 0.73 < \log 0.05 \text{ oe } \end{vmatrix}$	M1 M1		allow incorrect sign M1 must be correct ft (1 – 0.27) from (ii) for M1M1
	n = 10	A1	3	10 with incorrect sign in wking: SCB2 10 with just $0.73^9 = 0.059$: M1M1A1
Total		7	1	

(Q4, June 2006)

6 (i)	Geometric.	B1		
	Each attempt (or result or try) indep	B1	2	In context. Not "events, trials, outcomes" . Ignore extra
(ii)(a)	$(^{2}/_{3})^{3} \times ^{1}/_{3}$	M2		$(\frac{2}{3})^2 x^{1/3}$ or $(\frac{2}{3})^4 x^{1/3}$:
	$=$ $^{8}/_{81}$ or 0.0988 (3 sfs)	A1	3	allow other numerical "p" (0 <p<1):m1< td=""></p<1):m1<>
(b)	$(^{2}/_{3})^{3}$ $1 - (^{2}/_{3})^{3}$	M1 M1		$ \begin{array}{c} \text{not } (^{2}/_{3})^{3} \text{ x } \dots \\ \text{or } ^{1}/_{3} + ^{2}/_{3}x^{1}/_{3} + (^{2}/_{3})^{2}x^{1}/_{3} \end{array} $ M2
	1 – (73)	IVII		$1 - (^2/_3)^4$ or $1 - (^*q'')^4$ M1 or 3 terms, with 2 correct M1
				or 3 correct terms + 1 extra $M1$ or "p" + "qp" + "q ² p" $M1$
	10			or 1 – sum of 3 correct terms M1
	$= \frac{19}{27}$ or 0.704 (3sfs)	A1	3	"p" means num value, not $\frac{1}{3}$
(iii)	3	B1f	1	or ¹ / _{"p"}
(iv)	$ \begin{array}{c c} 1 - {}^{19}/_{27} & (1 - 0.70335) \text{ or } 0.8865 \\ ({}^{8}/_{27})^2 \ x^{19}/_{27} & 0.2963^2 \ x \ 0.7037 \\ \end{array} $	M1		ft (b) for M1M1 must see method if ft
		M1		Allow figs rounded to 2 sfs for M1M1
	$= \frac{1216}{19683} = 0.0618 (3 \text{ sfs})$	A1	3	cao. allow art 0.0618 or 0.0617
Total		12		

(Q8, June 2006)

7 (i)			stutor	Complied by $(^1/_3)^n \times ^2/_3$
	$(^{1}/_{3})^{3} \times ^{2}/_{3}$	M1		
	$=\frac{2}{81}$ or 0.0247 (3 sfs)	A1	3	
ii	$(^{1}/_{3})^{3}$	M1		or $^{2}/_{3}+^{1}/_{3}x^{2}/_{3}+(^{1}/_{3})^{2}x^{2}/_{3}:M2$
	$1 - (^{1}/_{3})^{3}$	M1		one term omitted or extra or wrong: M1
				$1 - (\frac{1}{3})^4$ or $1 - (\frac{2}{3} + \frac{1}{3}x^2 + (\frac{1}{3})^2 x^2 + (\frac{1}{3})^3 x^2 + (\frac{1}{3})^3 x^2 + (\frac{1}{3})^3 x^3 + (\frac{1}{3})^3 x^3$
	$^{26}/_{27}$ or 0.963 (3 sfs)	A1	3	
iii	1 / 2/3	M1		
	= 3/2 oe	A1	2	
Total		:	8	

(Q6, Jan 2007)

8 (i)	$^{11}\text{C}_5 \text{ x } (^{1}/_{4})^6 \text{ x } (^{3}/_{4})^5$	M1		or $462 \times (^{1}/_{4})^{6} \times (^{3}/_{4})^{5}$
	0.0268 (3 sfs)	A1	2	
ii	$q^{11} = 0.05$ or $(1-p)^{11} = 0.05$	M1		(any letter except p) ¹¹ = 0.05 oe
	$\sqrt[11]{0.05}$	M1		oe or inv $\log(\frac{\log 0.05}{11})$
	q = 0.762 or 0.7616	A1		11
	p = 0.238 (3 sfs)	A1f	4	ft dep M2
iii	$11 \times p \times (1-p) = 1.76$ oe	M1		not $11pq = 1.76$
	$11p - 11p^2 = 1.76$ or $p - p^2 = 0.16$ $11p^2 - 11p + 1.76 = 0$ or $p^2 - p + 0.16 = 0$	A1		any correct equn after mult out
		A1		or equiv with $= 0$
	$(25p^2 - 25p + 4 = 0)$			
	(5p-1)(5p-4) = 0			or correct fact'n or subst'n for their quad
	or $p = \frac{11 - \sqrt{(11^2 - 4x11x1.76)}}{}$	M1		equ'n eg $p = \underline{1 \pm \sqrt{(1-4x0.16)}}$
	2 x 11			2
	p = 0.2 or 0.8	A1	5	
Total		11		

(Q9, Jan 2007)

9 (i)	P(contains voucher) constant oe	B1		Context essential
	Packets indep oe	B1	2	NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2	2	B1 for 0.9456 or 0.946 or 0.997(2) or for 7 terms correct, allow one omit or extra NOT 1 – 0.9857 = 0.0143 (see (iii))
iii	(1 – 0.9857) = 0.014(3) (2 sfs)	B1ft 1		Allow 1- their (ii) correctly calc'd
iv	B(11, 0.25) or 6 in 11 wks stated or impl ${}^{11}C_6 \times 075^5 \times 0.25^6$ (= 0.0267663) P(6 from 11) × 0.25 = 0.00669 or 6.69 x 10^{-3} (3 sfs)	B1 M1 M1 A1	4	or $0.75^a \times 0.25^b$ ($a + b = 11$) or ${}^{11}C_6$ dep B1
Total		9		

(Q7, June 2007)

40 (1.)	1 , 1,	3.71	
10 (ia)	$1/\sqrt{1}/5$	M1	
	= 5	A1 2	
b	$(^4/_5)^3 \times ^1/_5$	M1	
	$= {}^{64}/_{625}$ or 0.102 (3 sfs)	A1 2	
С	$(^{4}/_{5})^{4}$	M1	or 1- $\binom{1}{5}$ + $\binom{4}{5} \times \binom{1}{5}$ + $\binom{4}{5} \binom{2}{5} \times \binom{4}{5}$ + $\binom{4}{5} \binom{3}{5} \times \binom{1}{5}$ NOT 1 - $\binom{4}{5} \binom{4}{5}$
	$=\frac{256}{625}$ or a.r.t 0.410 (3 sfs) or 0.41	A1 2	(),
iia	$P(Y=1) = p, P(Y=3) = q^2p, P(Y=5) = q^4p$		$P(Y=1)+P(Y=3)+P(Y=5)=p+q^{2}p+q^{4}p$ $p, p(1-p)^{2}, p(1-p)^{4}$ $q^{1-1}, q^{3-1}, q^{5-1}$
			7 ' 7 ' 7
			or any of these with $1-p$ instead of q
			"Always q to even power $\times p$ "
		B1 1	Either associate each term with relevant prob
	physicsandm:		Or give indication of how terms derived com
b	Recog that c.r. = q^2 or $(1-p)^2$	M1	or eg $r = q^2 p/p$
	$S_{\infty} = \frac{p}{1 - q^2} \text{or} \frac{p}{1 - (1 - p)^2}$	M1	
	$P(\text{odd}) = \frac{1 - q}{1 - q^2}$	M1	$(= \underline{p}) = \underline{p} $ $(2p - p^2) = \underline{p} $
	$= \frac{1-q}{(1-q)(1+q)}$ Must see this step for A1	A1 4	$(=\frac{1}{2-p}) = \frac{1}{2-(1-q)}$
	$(=\frac{1}{1+q} \mathbf{AG})$		

(Q9, June 2007)

11 (i)	$(4/_5)^3 \times (1/_5)$ oe	M1	Allow M1 for $\binom{4}{5}^4 \times \binom{1}{5}$
	$= \frac{64}{625}$ or 0.102 (3 sfs)	A1 2	
ii	$(^{4}/_{5})^{4}$ alone		Allow $(^4/_5)^3$ or $(^4/_5)^5$; not 1 - $(^4/_5)^4$
	or $1 - (\frac{1}{5} + \frac{4}{5}x^{1}/_{5} + (\frac{4}{5})^{2}x^{1}/_{5} + (\frac{4}{5})^{3}x^{1}/_{5})$	M1	Allow one term omitted or wrong
			or "correct" extra
	$= \frac{256}{625}$ or 0.410 (3 sfs)	A1 2	Allow 0.41
iii	5	B1 1	
Total		5	

X

(Q2, Jan 2008)

physicsandmathstutor.com

12 (ia)	Binomial stated or implied 0.9806	B1 B1 2	by use of tables or $0.2^{a} \times 0.8^{b}$, $a+b = 12$
b	0.5583 seen 1 – 0.5583	M1 M1	add 10 corr terms or 1-(add 3 corr terms): M2
	= 0.442 (3 sfs)	A1 3	or 1– 0.7946 or 0.205 or 1-0.6774 or 0.323 or 1-0.3907 or 0.609 or add 9 terms or 1-(add 2 or 4 terms): M1
ii	$\int_{0.5}^{15} C_4 \times 0.3^4 \times 0.7^{11}$	M2	¹⁵ C ₄ x 0.3 ¹¹ x 0.7 ⁴ : M1
	= 0.219 (3 sfs)	A1 3	
Total		8	

(Q5, Jan 2008)

13 (ia)	Results or matches are indep	B1	allow "wins" indep; not "trials" indep
	Prob of winning is constant	B1 2	not "success"
ib	No of wins (or losses)	B1 1	
ii	$ \begin{array}{c} ^{21}C_{10}p^{10}q^{11} = ^{21}C_{9}p^{9}q^{12} \\ \underline{12}p = q \text{ or } \underline{12}p(1-p)^{-1} = 1 \text{ or similar} \\ 10 \end{array} $	M1 M1M1	or $(1-p)$ for q & allow omit bracket or $352716 p^{10} q^{11} = 293930 p^9 q^{12}$ M1 for $^{12}/_{10}$ or $^{6}/_{5}$ or 1.2 or $^{5}/_{6}$ or 0.833 M1 for p & q cancelled correctly
	1.2p = 1 - p oe eg $p = 0.833(1-p)$ or $352716p = 293930(1-p)$	M1	or equiv equn in p or q (cancelled) nos not nec'y cancelled; not alg denom
	$p = \frac{5}{11}$ or 0.455 (3 sfs) oe	A1 5	
Total		8	

(Q7, Jan 2008)

14 (ia)	Geo stated	M1		or impl. by $(^{7}/_{8})^{n}(^{1}/_{8})$ or $(^{1}/_{8})^{n}(^{7}/_{8})$ alone
	$(^{7}/_{8})^{2}(^{1}/_{8})$	M1		
	⁴⁹ / ₅₁₂ or 0.0957 (3 sfs)	A1	3	
(b)	$(^{7}/_{8})^{3}$ alone	M2		or $1-(^{1}/_{8}+^{7}/_{8}\times^{1}/_{8}+(^{7}/_{8})^{2}\times^{1}/_{8})$: M2
				one term incorrect, omit or extra: M1
				$1 - (\frac{7}{8})^3$ or $(\frac{7}{8})^2$ alone: M1
	³⁴³ / ₅₁₂ or 0.670 (3 sfs) allow 0.67	A1	3	
(ii)	8	B1	1	
(iii)	Binomial stated or implied	M1		eg by $({}^{7}/_{8})^{a}({}^{1}/_{8})^{b}$ $(a+b=15, a,b \neq 1)$, not just ${}^{n}C_{r}$
	$^{15}\text{C}_2(^{7}/_8)^{13}(^{1}/_8)^2$	M1		
	= 0.289 (3 sfs)	A1	3	
Total		10		

(Q3, Jan 2009)

15 (i)	Binomial	B1		
	n = 12, p = 0.1	B1		B(12, 0.1): B2
	Plates (or seconds) independent oe	B1		NOT: batches indep
	Prob of fault same for each plate oe	B1	4	Comments must be in context
				Ignore incorrect or irrelevant
(ii)(a)	$0.9744 - 0.8891 \text{ or } {}^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$	M1		
	= 0.0852 or 0.0853 (3 sfs)	A1	2	
(b)	$1 - 0.2824$ or $1 - 0.9^{12}$	M1		allow 1 – 0.6590 or 1 – 0.9 ¹¹
	=0.718 (3 sfs)	A1	2	
(iii)	"0.718" and 1 – "0.718" used	B1		ft (b) for B1M1M1
	$(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$			
	$+ {}^{4}C_{2}(1-0.718)^{2} \times 0.718^{2}$	M2		M1 for any one term correct
				(eg opp tail or no coeffs)
				1 – P(3 or 4) follow similar scheme M2 or M1
				1 – correct wking (= 0.623) B1M2
	= 0.317 (3 sfs)	A1	4	cao
Total		12		

(Q7, Jan 2009)

16			Q1: if consistent "0.8" incorrect or $\frac{1}{8}$, $\frac{7}{8}$ or 0.02 allow M marks in ii, iii & 1st M1 in i
i	Binomial stated	M1	or implied by use of tables or ${}^{8}C_{3}$ or $0.2^{a} \times 0.8^{b}$ $(a+b=8)$
	$0.9437 - 0.7969$ or ${}^{8}C_{3} \times 0.2^{3} \times 0.8^{5}$	M1	, , ,
	= 0.147 (3 sfs)	A1 3	
ii	1– 0.7969	M1	allow 1–0.9437 or 0.056(3) or equiv using formula
	= 0.203 (3 sf)	A1 2	
iii	8 × 0.2 oe	M1	$8 \times 0.2 = 2 \text{ M1A0}$
	1.6	A1 2	$1.6 \div 8 \text{ or } ^{1}/_{1.6} \text{ M0A0}$
Total		7	

(Q1, June 2009)

17			Q4: if consistent "0.7" incorrect or $\frac{1}{3}$, $\frac{2}{3}$ or 0.03 allow M marks in ii, iii & 1 st M1 in i
i	Geo stated $0.7^3 \times 0.3$ alone $^{1029}/_{10000}$ or 0.103 (3 sf)	M1 M1 A1 3	or implied by $q^n \times p$ alone $(n > 1)$ $0.7^3 - 0.7^4$
ii	0.7^4 alone = $^{2401}/_{10000}$ or 0.240 (3 sf)	M1 A1 2	$1 - (0.3 + 0.7 \times 0.3 + 0.7^{2} \times 0.3 + 0.7^{3} \times 0.3)$ NB 1- 0.7 ⁴ : M0
iii	$1 - 0.7^5$	M2	or $0.3 + 0.7 \times 0.3 + + \dots + 0.7^4 \times 0.3$ M2 M1 for one term extra or omitted or wrong or for $1-$ (above) M1 for $1-0.7^6$ or 0.7^5
	= 0.832 (3 sfs)	A1 3	NB Beware: $1 - 0.7^6 = 0.882$
		8	

(Q4, June 2009)

physicsandmathstutor.com

18 (i)	$(1-0.12)^n$	22	M1	Can be implied by 2^{nd} M1 allow $n-1$
	$\frac{\log 0.05}{\log 0.88}$ $n = 24$	or $0.88^{23} = 0.052$ or $0.88^{24} = 0.046$	M1 A1 3	or log _{0.88} 0.05 or 23.4() Ignore incorrect inequ or equals signs
ii	${}^{6}C_{2} \times 0.88^{4} \times 0.12^{2}$ $\times 0.12$ $= 0.0155$	(= 0.1295)	M3 M1 A1 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Total			8	

(Q9, June 2009)

19 (i)	attempts at threading indep	B1		in context
10 (1)	prob of succeeding in threading const	B1	2	in context
(ii) (a)	$0.7^4 \times 0.3$	M1		
	= 0.0720 (3sf)	A1	2	Condone 0.072
(b)	0.7^{5}	M2		or $1-(0.3+0.7\times0.3+0.7^2\times0.3+0.7^3\times0.3$
				$+0.7^4 \times 0.3$)
				M1 for one term omitted or extra or
	physicsandma	thstu	utor	owning or $1-0.7^5$ or $(0.3++0.7^4\times0.3)$ or
	= 0.168 (3 sfs)	A1	3	$0.3, 0.7$ muddle or 0.7^4 or 0.7^6 alone.
				0.6 not 0.7 M0 in (a) M1 in (b)
				1/3,2/3 used M1in (a) M1 in (b)
(iii)	likely to improve with practice	B1		or thread strands gradually separate
				1 st B1 must be in context.
	hence independence unlikely			hence independence unlikely
	or prob will increase each time	B1	2	or prob will decrease each time
				or similar
				Allow 'change'
Total		[9)]	

(Q1, Jan 2010)

20 (i)	p^2	B1 1	
(ii)	$(q^2p)^2$ oe =AG	B1 1	
(iii)	$r=q^2$	B1	May be implied
	a/(1-r) used	M1	With a=p ² and r=q ² or q ⁴
	$(S_{\infty} =) \frac{p^2}{1 - q^2}$	A1	
		M1	Attempt to simplify using p+q=1 correctly. Dep on $r = q^2$ or q^4
	$= \frac{p^2}{1 - (1 - p)^2}$ $p/(2-p) AG$ physicsandma	ath at ut ar	$\frac{(1-q)^2}{(1-q)(1+q)} \text{or } p^2/p(1+q)$
	p/(2-p) AG physicsanding	Al 5	com Correctly obtain given answer showing at least one intermediate step.
P2Total		[7]	at least one intermediate step.

(Q9, Jan 2010)

21 (ia)	0.299 (3 sf)	B1 1	
ib	0.2991 – 0.1040	M1	Must subtract correct pair from table
	$= 0.195 (3 sf)$ or $\frac{1280}{6561}$ oe	A1 2	
iia	$^{15}\text{C}_4 \times (1-0.22)^{11} \times 0.22^4$	M1	Allow M1 for ${}^{15}C_4 \times 0.88^{11} \times 0.22^4$
	= 0.208 (3 sf)	A1 2	
iib	$(15 \times 0.22 =) 3.3$	B1	
	$15 \times 0.22 \times (1-0.22)$ or '3.3'×(1-0.22)	M1	Allow M1 for $15 \times 0.22 \times 0.88$
	= 2.57 (3 sf)	A1 3	
Total		8	

22 (ia)	Geo(0.3) stated or implied	M1	by $0.7^n \times 0.3$
(,	$0.7^3 \times 0.3$	M1	of one of
	= 0.103 (3 sf)	A1 3	
b	0.7^3 or 0.343	M1	0.7^3 must be alone, ie not $0.7^3 \times 0.3$ or similar
	$1 - 0.7^3$	M1	allow $1 - 0.7^4$ or 0.7599 or 0.76 for M1 only
			or $0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3$: M1M1
			1 term wrong or omitted or extra M1
			or $1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3)$ or 0.343: M1
	= 0.657	A1 3	
iia	State or imply one viewer in 1 st four	M1	or B(4, 0.3) stated, or ⁴ C ₁ used, or YNNNY
	13 -3		
	${}^{4}C_{1} \times 0.7^{3} \times 0.3 \qquad (= 0.412)$	M1	
	× 0.3	M1	dep 1st M1
	= 0.123 (3 sf)	A1 4	
b	$0.7^5 + {}^5C_1 \times 0.7^4 \times 0.3$	M1	or $1 - (0.3^2 + 2 \times 0.3^2 \times 0.7 + 3 \times 0.3^2 \times 0.7^2 + 4 \times 0.3^2 \times 0.7)$
	= 0.528 (3 sf)	A1 2	
			Not ISW, eg 1 – 0.528: M1A0
Total	physics	12 andmathstu	tor com

(Q8, June 2010)

23				SC:Consistent use of incorrect (1 – 0.2) score M-marks only SC:Consistent 0.8 insted of 0.2, no A-marks: max M0M2M2M2
				"Consistent" means in every part attempted
:	$0.8^2 \times 0.2$	M1		
1	$=\frac{16}{125}$ or 0.128	A1 2		
ii	$0.8^2 \times 0.2 + 0.8^3 \times 0.2 + 0.8^4 \times 0.2$	M2	1 term omitted or wrong or extra: M1	Using $P(X \le 5)$ & $P(X \le 2)$; three methods:
	$= \frac{976}{3125} \text{ or } 0.312 \text{ (3 sfs)}$	A1 3		$ \begin{aligned} 1 - 0.8^5 - & (1 - 0.8^2) \text{ or } 0.672 - 0.36; M2 \\ \text{Allow M1 for } 1 - 0.8^5 - & (1 - 0.8^3) \text{ or } 0.672 - 0.488 \\ & \text{ or } 1 - 0.8^4 - & (1 - 0.8^2) \text{ or } 0.5904 - 0.36 \end{aligned} $ $ 0.8^2 - 0.8^5; M2 \text{Allow M1 for } 0.8^3 - 0.8^5 \text{ or } 0.8^2 - 0.8^4 $
				0.2+0.8×0.2+0.8 ² ×0.2+0.8 ³ ×0.2+0.8 ⁴ ×0.2 – (0.2+0.8×0.2): M2 One term omitted or wrong or extra: M1 But NB If include 0.8^{-1} ×0.2 in both $P(X \le 5)$ & $P(X \le 2)$, get correct ans but M1M0A0
				M0 for eg $1 - 0.8^5 - 0.8^2$ or $0.672 - 0.64$
iii	0.84	M2	$1-(0.2 + 0.8 \times 0.2 + 0.8^2 \times 0.2 + 0.8^3 \times 0.2)$ 1 term omitted or wrong or extra: M1 1 - 0.8 ⁴ or 0.590 M1	$1 - (0.2 + 0.8 \times 0.2 + 0.8^{2} \times 0.2 + 0.8^{3} \times 0.2) \text{ M2}$
			or Ophysiestardmathistutor.com M1	$0.2 \times 0.8^4 \text{ M}0$ $1 - 0.8^n (n \neq 4) \text{ M}0$
	$=\frac{256}{625}$ or 0.4096 or 0.410 (3 sfs)	A1 3		
iv	$0.2 \times 0.8 \times 0.2$	M1	or $0.2 \times 0.8^{0} \times 0.8 \times 0.2$	or 0.032 NOT $n \times 0.2^2 \times 0.8$ except $n = 2$
	× 2	M1	or $0.2 \times 0.8 \times 0.2 + 0.8 \times 0.2 \times 0.2$	Fully correct method
				except allow M0M1 for $(0.2+0.8\times0.2)\times2$, must see method
	$= 0.064 \text{ or }^{8}/_{125}$	A1 3		Attempt 0,3 and/or 3,0, as well as 2,1and/or 1,2; max M1M0A0
				Careful: $0.2 \times 0.8 \times 0.2 + 0.2 \times 0.8^{-1} \times 0.128 = 0.064$ M1M0A0 Careful: $0.8 \times 0.8 \times 0.2 \div 2 = 0.064$: (ie $P(X = 3) \div 2$) M0M0A0
Total		11		

(Q2, Jan 2011)

24			Consistent use of $\frac{1}{3}$ or MR of 30% (eg	0.2): ("Consistent" as in Qu 2)
			(i) B1B0B1B1 (iia) B0	
			(iib) 0.7901-0.460	9 or ${}^{5}C_{2}(\frac{2}{3})^{3}(\frac{1}{3})^{2}$ M1; = 0.329 (3 sf) A1
				M1; ${}^{7}C_{3}(1 - {}^{\circ}0.3292)^{4}({}^{\circ}0.3292)^{3}$ M1; = 0.253 (3 sf) A1
i	Binomial or B (5, 0.3)	B1 B1	IC Max () TO	Allow mis-spellings but NOT "Biometric" Condone B~ $(5, 0.3)$ or B $(0.3, 5)$: B1B1 but B $(X = 0.3, n = 5)$: B1B0
	Prob of gift same for all pkts	B1	Prob of gift is constant or fixed or consistent or same oe	NOT: prob of success const; NOT prob stays same each go
	Whether pkt contains gift is indep of other pkts	B1 4	Obtaining a gift is indep Each time receive a gift is indep Context needed for 3 rd & 4 th B-mks	One box doesn't affect another. Pkts indep. Gifts indep She buys packets separately Prob of a gift is indep
				Prob of gift indep of one another & const: B1B1 NOT: Each week is indep NOT: Number of gifts received is indep NOT: Events indep
			physicsandmathstutor.com	If Geo(0.3) stated, can score max B0B0B1B1 If Geo(5, 0.3) stated, can score max B0B1B1B1
iia	0.8369	B1 1	or 0.837	
b	$0.8369 - 0.5282$ or ${}^{5}C_{2}(0.7)^{3}(0.3)^{2}$ = 0.3087 or 0.309 (3 sf)	M1 A1 2		
iii	p = ``0.3087''	M1	(iib) used in a calc'n eg "0.3087" × 3	or B(7, "0.3087") stated or 1 – "0.3087" used instead of "0.3087"
	$^{7}C_{3}(1 - \text{``}0.3087'')^{4}(\text{``}0.3087'')^{3}$ = 0.235 (3 sf)	M1 A1 3		n = 35 or 15: max M1M0A0
Total		10		n = 55 of 15. max withhold

(Q5, Jan 2011)

25 (ia)	$(1 - 0.5565)$ or $12 \times 0.85^{11} \times (1 - 0.85) + 0.85^{12}$	M1	or $1 - ((1-0.85)^{12}^{12}C_{10} \times 0.85^{10}(1-0.85)^2)$ ie $1 - (\text{all } 11 \text{ correct binomial terms})$	or 1 – 0.557
			le 1 – (an 11 correct omorniar terms)	NB 1 – 0.4435 (oe): M0A0
	= 0.4435 or 0.443 or 0.444 (3 sf)	A1 2		
b	$0.5565 - 0.2642$ or ${}^{12}C_{10}(1 - 0.85)^2(0.85)^{10}$	M1		or 0.557 – 0.264
	= 0.2923 or 0.2924 or 0.292 (3 sf)	A1 2		
c	$12 \times 0.85 \times (1-0.85)$	M1		
	= 1.53 oe	A1 2		
ii	$(\frac{3}{4})^2$ AND $\frac{3}{4} \times \frac{1}{4}$ seen (possibly \times 2)	M1	eg $(\frac{3}{4})^2 + \frac{3}{4} \times \frac{1}{4}$ or $2 \times (\frac{3}{4})^2 + 2 \times \frac{3}{4} \times \frac{1}{4}$ or $0.5625 + 0.1875$ or $0.5625 + 0.375$	or $\frac{9}{16}$ and $\frac{3}{16}$ or $\frac{9}{16}$ and $\frac{3}{8}$ eg in table or list
	$(\frac{3}{4})^2 \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe or $\frac{27}{128}$ or 0.211	M1	or eg 0.5625 × 0.375	Allow even if further incorrect wking
	$2 \times (\frac{3}{4})^2 \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe	M1	Fully correct method	
	$=\frac{27}{64}$ or 0.422 (3 sfs)	A1 4		Ans 0.211: check wking but probably gets M1M1M0A0
				Use of 0.85 instead of $\frac{1}{4}$: MR max M1M1M1A0
Total		10		

(Q3, June 2011)

26	(i)	$(1-0.12)^{13}$ or $13\times(1-0.12)^{12}\times0.12$	M1	Either seen	
		$(1-0.12)^{13} + 13 \times (1-0.12)^{12} \times 0.12$	M1	Fully correct method	1 – correct terms: M1M0A0
		= 0.526 (3 sf)	A1[3]		
	(ii)	$^{13}\text{C}_2 \times 0.12^2 \times (1 - 0.12)^{11}$	M1	or 0.275()	Allow if \times or $+$ something
		2 × "0.275275" × (1 – "0.275275")	M1	Correct method except allow omit "2 ×"	NB unlike 2 nd M1 in (i) which is for
		= 0.399 (3 sf)	A1		fully correct method
			[3]		
					NB $2 \times 0.12 \times 0.88$: M0M0A0

(Q3, Jan 2012)

physicsandmathstutor.com

27	(i)	V	B1	X because mode = 1 oe or Highest prob is $P(1)$ oe B2	For answer V the first B1 is indep, but not for other answers, ie:
		because [probs or values or geometric or etc] decreasing or halving or Highest prob is 1st Allow if word "decreasing" or "halving" or "sloping downwards" or any equivalent seen	В1	Z because P(0) = 0 or variable can't be 0 oe Allow "Geo distr'n cannot be zero" oe B2	V with no reason or incorrect reason scores B1B0, but Z or X or any other letter with no reason or incorrect reason scores B0B0.
		NOT "Positive skew"	[2]	"None of them": Ignore any reason given. B2	In all cases, once mark(s) have been scored, ignore all other comments.
	(ii)	Y. Peaks at 2 Y. Like normal, peak at 2 Y. Highest prob is middle one (or is at 2) Y. $P(X = 2)$ is max Y. Increase to 2 then decr Y. 1 4 6 4 1 alone or with $0.5^4 \times 10.0625$, 0.25 , 0.25 , 0.375 , 0.25 , 0.0625 Y. $P(1) = P(3)$ and $P(2)$ is greater/different			If values of some probs listed: 2 to 4 values: B1 Y: B1 For 3 rd B1 must link list with Y diag, eg "symmetrical" or "peak in middle" or "peak at 2" or "1 st = last" or "2 rd = 4 th " "same shape as Y diag", etc etc
		or equiv of any of the above If none of the above applies: Any implication that values not all equal	B1B1B1	Ignore all else 4C ₀ , 4C ₁ , 4C ₂ , etc	same shape as 1 diag . eee ee
		eg: Not uniform or values increase (then decrease) or there is a peak	B1	indep	
		Symmetrical or mirror image oe or ${}^{4}C_{0} = {}^{4}C_{4}$ or $2nd = 4th$ or similar or mean = 2, or $E(X) = 2$, or 2 is hi'est prob, or peak at 2,	B1	indep	
		or peak is middle value	B1 [3]	indep	

(Q6, Jan 2012)

physicsandmathstutor.com

28	(i)	Geo(0.6) or G(0.6) or Geo with $p = 0.6$	B1B1	Allow Geo(60%) B1B1	Bin(, 0.6) B0B1. Can still score comment marks
		P(woman) const or chance of woman const Each voter has same prob	B1	or %age of women is constant	In context
		Each voter has same prob	DI		
		Whether one voter is a woman is indep of		Allow: "voter(s) independent",	Allow "vote indep"
		whether any other is a woman	B1	"Men & women are independent" "P(woman) is indep"	In context
				"Each woman is indep"	(EACH comment must be in context)
			[4]		(======================================
					Ignore all else
	(ii)	$0.4^{3} \times 0.6$	M1	ft their Geo(p) from (i)	Allow $0.3^3 \times 0.6$ (but no other $q^3 \times 0.6$)
		$= \frac{24}{625}$ or 0.0384	A1f	ft their $Geo(p)$ from (i)	eg if $p = 0.4$, ans 0.0864 M1A1f
			[2]		
	(iii)	0.4^3 alone, or $(0.4^4 + 0.4^3 \times 0.6)$ or $(0.4^4 +$	M1	$1-(0.6+0.4\times0.6+0.4^2\times0.6)$	Allow M1 for 0.4^4 alone (= 0.0256)
		(ii))		(allow extra term	M0 for $0.4^r \times 0.6$ and for $1 - 0.4^3$
				$0.4^3 \times 0.6$)	
				ft their Geo(p) from (i)	
		$=$ $^{8}/_{125}$ or 0.064	A1f [2]	ft their Geo(p) from (i)	eg if $p = 0.4$, ans 0.216 M1A1f

PhysicsAndMathsTutor.com

29	(i)		Binomial stated	M1	or implied by $C \times 0.5^r$ or use of table	or $0.5^7 \times 0.5 + 0.5^8$ or $0.5^8 + 0.5^8$
			1 – 0.9648	M1	or ${}^8C_7 \times 0.5^7 \times 0.5 + 0.5^8$ fully correct	$1-(0.5^8+8\times0.5^8+^8C_20.5^8)$ all correct
			$= 0.0352 (3 \text{ sfs}) \text{ or } ^{9}/_{256}$	ph /s lics	method sandmathstutor.com	
	(ii)	(a)	$ \begin{array}{l} ^{22}C_{11} \times 0.5^{11} \times 0.5^{11} \\ = 0.168 (3 \text{ sfs}) \end{array} $	M1 A1	Fully correct method. Not ISW	eg 0.168 ² or 2 × 0.168 or 1–0.168: M0A0
			, ,	[2]		
	(ii)	(b)	1 – "0.168"		or $0.5^{22}(^{22}C_{12} + ^{22}C_{13} + ^{22}C_{14} + + 22 + 1)$ All 11 correct terms seen, or correct ans: M2 or $P(X = 12, 13, 21, 22)$ stated or implied	or $1 - (^{22}C_{12} + ^{22}C_{13} + ^{22}C_{14} + + 22 + 1)$ 1 - all 12 correct terms M2
					with ≥ 2 terms shown or one extra term M1	or similar marks for $P(X = 10, 9, 80)$
			¹ / ₂ (1 - "0.168") = 0.416 (3 sfs)	M1 playsics	andmathstutor.com	
				[3]		

(Q8, Jan 2012)

30	(i)		1 – 0.1754 alone	M1	Allow 1– 0.2855 or 0.7145 or 0.715 alone	
			= 0.825 (3 sfs)	A1		
				[2]		
	(ii)	(a)	$^{4}C_{2} \times 0.7^{2} \times 0.3^{2}$	M1	All correct	
			$=\frac{1323}{5000}$ or 0.265 (3 sf)	A1		
			5000	[2]		
	(ii)	(b)	4,4,2 & 4,3,3 only, seen or implied	B1	Both needed	
			$P(Y=4) = 0.7^4$ (or $\frac{2401}{10000}$ or 0.2401)	M1		
			$P(Y = 3) = 4 \times 0.3 \times 0.7^3$ (or $\frac{1029}{2500}$ or 0.4116)	M1		
			$P(4,3,3) = 3 \times \text{``0.2401''} \times \text{``0.4116''}^2 \text{(or 0.122)}$	M1	ie $3 \times \text{their P(4)} \times (\text{their P(3)})^2$	if "3×" omitted twice or "3!×" used twice allow M1M0
			$P(4,4,2) = 3 \times 0.2401^{\circ 2} \times 0.2451^{\circ 3}$ (or 0.0458)	M1	ie 3 × (their P(4)) 2 × their P(2) ft (ii)(a) For M mks ignore extra combs eg P(4,4,3)	eg ans 0.0560, 0.0559,0.336,
					FOI WI HIKS Ignore extra combs eg F(4,4,3)	probably B1M1M1M1M0A0 but must see method
			P(Tot = 10) = 0.168 (3 sfs)	A1		
					If B(30, 0.6) <u>clearly</u> being used:	
					Any 5 combs adding to 10 seen B1	
					$P(8) = {}^{30}C_8 \times 0.4^{22} \times 0.6^8 \text{ or } 0.0002$	
					$P(9) = {}^{30}C_{9} \times 0.4^{21} \times 0.6^{9} \text{ or } 0.0007$ $P(10) = {}^{30}C_{10} \times 0.4^{20} \times 0.6^{10} \text{ or } 0.0020$	
					, ,	
				[6]	or two correct M1	
					No more marks	

(Q8, June 2012)

31	(i)	(a)	Geo stated or implied $0.9^5 \times 0.1$ alone $= 0.059(0)$ (2 sfs)	M1 M1 A1 [3]	eg by $0.9^p \times 0.1$ or $0.1^p \times 0.9$ alone, $p>1$ all correct	
	(i)	(b)	0.9^5 or 0.59 (NB cf ans to (i)(a)!!) $1 - 0.9^5$ = 0.4095 or 0.410 (3 sfs)	M1 M1	$0.1 + 0.9 \times 0.1 + \dots 0.9^4 \times 0.1$: M2 1 term wrong or omit or extra or 1 – (all terms correct): M1 or 1 – 0.9 ⁶ : M1	M0M0A0 for $0.9^p \times 0.1$
	(ii)	(a)	$0.05 + 0.95^{2} \times 0.05$ = $\frac{761}{8000}$ or 0.0951 (3 sfs)	M1 A1 [2]	All correct	NB!! 2 × 0.95 × 0.05 = 0.095 M0A0
	(ii)	(b)	$0.05, 0.95^2 \times 0.05, \dots$ or $\frac{1}{20}, \frac{361}{8000}, \dots$ oe $\frac{0.05}{1-0.95^2} \text{ or } \frac{0.05}{1-0.9025} \text{ oe}$ $= \frac{20}{39} \text{ or } 0.513 \text{ (3 sfs)}$	M1 M1 A1 [3]	\geq 2 terms. Not nec'y added May be implied by next line or $\frac{0.05}{1-(1-0.5)^2}$ or $\frac{0.05}{2\times0.05-0.05^2}$ or $\frac{1}{1.95}$ oe	or $r = 0.95^2$ stated or implied NB $\frac{0.05}{1 - 0.5 \times 0.05} = 0.0513$ M0A0

(Q9, June 2012)

physicsandmathstutor.com

32	If incorrect p used consistently in all parts of qu 5, no mks in (i)(a) & (b) but can score M-marks in (ii) and (iii).					
	(i)	(a)	1.25 oe	B1 [1]		
	(i)	(b)	0.8965 – 0.6328	M1	${}^{5}C_{2}(\frac{3}{4})^{3}(\frac{1}{4})^{2}$	
			= 0.264 (3 sf)	A1 [2]	$=\frac{135}{512}$ or 0.264 (3 sf)	Answer which rounds to 0.264
	(ii)			M1	$((\frac{3}{4})^5)^2$ or $(\frac{243}{1024})^2$ or $(\frac{3}{4})^{10}$ oe $(=\frac{59049}{1048576})$	B(10. 0.25) seen or implied M
			Answer which rounds to 0.244	M1	$\left(\frac{3}{4}\right)^5 \times 5\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right) \text{ or } \frac{243}{1024} \times \frac{405}{1024} \text{ or } 5\left(\frac{3}{4}\right)^9 \left(\frac{1}{4}\right)$	Table or formula with $n = 10$ used M
					$(=\frac{98415}{1048576})$	$P(X \le 1)$ from table
				M1	2×(attempt P(1, 0) alone), (NOT 2×(P(1,0) + P(0,0))	or $(\frac{3}{4})^{10} + 10(\frac{3}{4})^9 \times (\frac{1}{4})$ M
					If $P(\text{sum} \le 2)$, all three M-mks are available, but for 3rd M1, must be $2 \times (P(1,0) + P(2,0))$ only	0.244 (3 sf) A1 $P(X \le 2) = 0.526$ from table $n = 10$ M1M1M1A0
				A1	Ans 0.150 probably M1M1M0A0 but check working Ans 0.188 probably M0M1M1A0 but check working	SC P($X = 2$) answer 0.282: B1
				[4]		
	(iii)		Use of 0.2637 or 0.264 ${}^{10}\text{C}_3 \times (1 - {}^{\circ}0.2637^{\circ})^7 \times {}^{\circ}0.2637^{\circ}^3$	M1 M1	or their (i)(b) ft (i)(b) allow ft their (ii) for this M1 only	SC allow ${}^{10}\text{C}_3 \times (1 - {}^{\circ}0.282^{\circ})^7 \times {}^{\circ}0.282^{\circ}$ M0M1 (0.282 comes from P(3 totals = 2))
			= 0.258 (3 sf)	A1 [3]	Correct ans, no working: M1M1A1	(0.202 comes from 1 (3 <u>totals</u> – 2))

(Q5, Jan 2013)

33	(i)	(a)	$0.9^4 \times 0.1$	M1			
			$=\frac{6561}{100000}$ or 0.0656 (3sf)	A1			
			100000	[2]			
	(i)	(b)	0.9^{5}	M1	Allow 0.9 ⁴ or 1–0.9 ⁵ :M1	$1 - (0.1 + 0.9 \times 0.1 + 0.9^2 \times 0.1 +$	
					but 1–0.9 ⁿ $(n \neq 5)$ or 0.1×0.9^n :M0	$0.9^4 \times 0.1$)	
			$=\frac{59049}{100000}$ or 0.59 (2 sf)	A1		Allow without "1 -" OR omit last	
			100000 01 010 (2 01)			term	
				[2]		NB $0.9^5 \times 0.1 = 0.0590 \text{ M}0\text{A}0$	
	(i)	(c)	0.1×0.1 or $[0.1 \times 0.1 \times 0.9 + 0.1 \times 0.1 \times 0.1]$	e M1		3×0.1 ² ×0.9+0.1 ³ no incorrect multiples	
			+ 0.1×0.9×0.1	e M1	M1M1 two correct terms, no incorrect multiples	M2 for 1st term; M1 for 2nd	
			+ 0.9×0.1×0.1	e M1	M1 all correct		
						This method only scores using "1 – ":	
			=0.028	A1	Ans 0.027 probably M0M1M1A0 but check	0.9^3 ; $3\times0.9^2\times0.1$ no incorrect multiples	
					working	M1; M1	
						1 – one or both terms with no further	
					SC if no M-mks scored:	wking: M1(dep M1)	
					SSF, SSS, FSS, SFS	eg 1 – 0.9 ³ alone M1M0M1	
				[4]	or SS, FSS, SFS seen or implied: B1		
	(ii)	(a)	$0.9 \times 0.8 \times 0.1$	M1	alone or allow \times 0.8 (ie girls in wrong order)	NOT 0.9×0.8×0.1×0.2= 0.0144: M0A0	
			$=\frac{9}{125}$ or 0.072	A1	(=0.0576)	NOT 0.9×0.8×0.2= 0.144: M0A0	
			123	[2]			
	(ii)	(b)	$0.9^{9 \text{ or } 10} \times 0.8^{9 \text{ or } 10} \times 0.1 \text{ (or } \times 0.2, \text{ not }$	M1	allow $0.9^{9 \text{ or } 10} \times 0.8^{9 \text{ or } 10} \times 0.1 \times {}^{18,19,20}C_1$	If ans = 0.00360 or 0.0150 see SC	
			×0.1×0.2)			below	
			$(0.9 \times 0.8)^9 \times 0.1$ oe	M1	fully correct		
			$=5.2\times10^{-3}$ or 0.0052 (2 sf)	A1			
					SC Consistent use of 0.8 for both girls: (ii)(a) 0.128 (ii)(b) 0.00360		
					8 1717	0.081 (ii)(b) 0.0150 If both these ans	
				[3]	seen, allow (a) 0 (b) B1		

(Q8, Jan 2013)